Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Heliyon ; 9(3):e14108-e14108, 2023.
Article in English | EuropePMC | ID: covidwho-2280686

ABSTRACT

Over time, the antigenic evolution of emerging variants of SARS-CoV-2 has demanded the development of potential protective vaccines. Administration of additional doses of current vaccines based on the WT spike protein may boost immunity, but their effectiveness has dwindled for patients with more recent variants. Here, we studied the neutralization activity of post-WT strain-based vaccination and a structural simulation in-silico based on the interactions of the RBD-hACE2 as the key to initiating infection among the VOCs of SARS-CoV-2. Our data display shows that WT sera showed a markedly greater reduction in Delta and Omicron, suggesting that the Wuhan-based vaccines may be more susceptible to breakthrough and new VOCs. According to the MD simulation, mutations of Omicron result in a significant change in the variant charge distribution throughout the binding interface that consequently alters the critical interface electrostatic potential in comparison to other variants. This observation provides new insights into immunization policy and next-generation vaccine development. Graphical abstract Image 1

2.
International Journal of Healthcare Management ; : 1-9, 2022.
Article in English | Taylor & Francis | ID: covidwho-1819744
3.
Clin Microbiol Infect ; 28(6): 882.e1-882.e7, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1783261

ABSTRACT

OBJECTIVES: The BIV1-CovIran vaccine is highly effective against COVID-19. The neutralizing potency of all SARS-CoV-2 vaccines seems to be decreased against variants of concern. We assessed the sensitivity of the Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2) variants to neutralizing antibodies (NAbs) present in sera from individuals who had received the BIV1-CovIran candidate vaccine compared with an original Wuhan-related strain. METHODS: The ability of vaccine serum to neutralize the variants was measured using the conventional virus neutralization test. The correlation of spike (S) protein antibody and anti-receptor binding domain with neutralizing activity was investigated. RESULTS: The current study demonstrated that 29 of 32 (90.6%; 95% CI: 75.0-98.0) of the vaccinees developed NAbs against a Wuhan-related strain. It is noteworthy that 28 (87.50%) and 24 of 32 (75%) of the recipients were able to produce NAbs against Alpha, Beta, and Delta variants, respectively. Serum virus-neutralizing titres for different SARS-CoV-2 strains were weakly correlated with anti-receptor binding domain antibodies (Spearman r = 36-42, p < 0.05), but not S-binding antibodies (p > 0.05). DISCUSSION: Although there was a reduction in neutralization titres against the Alpha, Beta, and Delta variants compared with the Wuhan strain, BIV1-CovIran still exhibited potent neutralizing activity against the SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Inactivated
SELECTION OF CITATIONS
SEARCH DETAIL